Top

News & Events

Oxford BioDynamics awarded US FNIH Grant to apply EpiSwitch® Immune Health test for improved prediction of patient response to Immune Checkpoint Inhibitor (ICI) cancer therapies

Oxford BioDynamics awarded US FNIH Grant to apply EpiSwitch® Immune Health test for improved prediction of patient response to Immune Checkpoint Inhibitor (ICI) cancer therapies

  • Non-invasive, simple blood test (liquid biopsy)
  • OBD’s EpiSwitch® 3D genomics platform is well-known amongst the consortium’s pharmaceutical companies
  • US launch of EpiSwitch® ICI response test expected Q4, 2021

Oxford, UK – 31 August 2021 – Oxford BioDynamics Plc (AIM: OBD, the Company), a biotechnology company developing targeted clinical diagnostic tests for immune health utilizing its EpiSwitch® 3D genomics technology, announces that it has been awarded an FNIH Partnership for Accelerating Cancer Therapies (PACT) Grant to use the EpiSwitch diagnostic platform for accurate prediction of a patient’s response to Immune Checkpoint Inhibitors (ICIs) from a routine blood sample.

The grant worth $910,000 (RFA #2021-PACT001) is executed by the Foundation for the National Institutes of Health (FNIH), a US not-for-profit organization managing the precompetitive collaboration between the National Institutes of Health (NIH), National Cancer Institute (NCI), US Food and Drug Administration (US-FDA), and 12 leading pharmaceutical companies comprising AbbVie, Amgen, Boehringer-Ingelheim, Bristol-Myers Squibb, Celgene, Genentech/Roche, Gilead, GlaxoSmithKline, Janssen, Novartis (NIBR), Sanofi, and Pfizer, as part of the Beau Biden Cancer Moonshot™ Initiative accelerating cancer research. PACT seeks to provide a systematic approach to cancer biomarker investigation in clinical trials by supporting development of standardized assays.

Immuno-oncology (IO) focuses on using an individual’s immune system to help fight their cancer using a class of drugs, ICIs, to target either of the immune regulatory proteins PD-1 or PD-L1.  At present, of those deemed eligible to receive an ICI, less than 30% will benefit from these drugs[1]. Unfortunately, a similar number will experience significant and sometime fatal side effects when these therapies are used[2].

Current testing modalities cannot predict who will and won’t respond and generally require an invasive tumor biopsy. Development of a predictive test, one that only requires a small blood sample, will help oncologists to successfully deploy these drugs as well as enable the pharmaceutical companies to further understand and develop IO therapies to expand their benefits.

In Q4 2021, OBD expects to launch the “EpiSwitch® ICI Response Test” as an LDT to allow access for oncologists who want to use it immediately and to start shaping the market.

The test, which is a predictive diagnostic of likely response in cancer patients considered for monotherapy treatment with immune checkpoint inhibitors, has been in full development since 2018. More than 800 blood samples from multiple cohorts of patients have been analyzed, including several studies where the outcomes were blinded to validate the predictive abilities of this technology. The aim of the test is to help oncologists deploy ICI drugs more successfully as well as enable pharmaceutical companies to further understand and develop IO therapies to expand their benefits.

The two-year $910,000 PACT Grant awarded to OBD will fund extended application of this technology to the analysis of primary and acquired resistance to ICI in several trials, including over 186 longitudinal samples from an observational trial, encompassing at least 4 separate ICI therapies and 7 common cancer types. The project will further validate this first-generation immune health assay for predicting response as well as monitoring resistance to ICI monotherapies. It will also evaluate key differences in predictive profiles of the patients treated with a combination therapy of ICI and an epigenetic drug.

In awarding the PACT grant, the reviewers highlighted the strengths of OBD’s success in applying the EpiSwitch® platform for biomarker discovery, the prior experience of the team, the clinical practicality of non-invasive EpiSwitch testing from blood and the high relevance of the 3D genomic epigenetic modality.

OBD’s EpiSwitch 3D genomics platform is well-known amongst the consortium’s pharmaceutical companies and has been used for practical patient stratification in prognostic, predictive and early diagnostic applications across immuno-oncology, autoimmune and neurodegenerative indications[3-6].

Dr Stacey Adam, Associate Vice President, Research Partnerships at the FNIH, said:
“The PACT partners are pleased to support the development of a novel epigenetic biomarker platform that can be used in a non-invasive manner and across various clinical settings, thereby allowing for better assignment of patients to specific immunotherapies to treat their cancer.”

Dr Jon Burrows, CEO of Oxford BioDynamics, said:
“The recognition of the EpiSwitch® platform by the consortium of US federal agencies and top pharmaceutical stakeholders marks another significant validation of OBD’s ability via 3D genomics technology to address the clinical challenges of personalized medicine, cancer treatment and immune health.”

 

About Oxford BioDynamics Plc
Oxford BioDynamics Plc (AIM: OBD) is a global biotechnology company, advancing personalized healthcare by developing and commercializing precision medicine tests for life-changing diseases.

In March 2021, the Company launched its first commercial prognostic test, EpiSwitch® CST (Covid Severity Test) and the first commercially available microarray kit for high-resolution 3D genome profiling and biomarker discovery, EpiSwitch® Explorer Array Kit. Its next product will be a predictive immune response profile for immuno-oncology (IO) checkpoint inhibitor treatments, to be launched later in 2021.

The Company has developed a proprietary 3D genomic biomarker platform, EpiSwitch®, which can build molecular diagnostic classifiers for prediction of response to therapy, patient prognosis, disease diagnosis and subtyping, and residual disease monitoring in a wide range of indications.

Oxford BioDynamics has participated in more than 40 partnerships with big pharma and leading institutions including Pfizer, EMD Serono, Genentech, Roche, Biogen, Mayo Clinic, Massachusetts General Hospital and Mitsubishi Tanabe Pharma.

The Company has created a valuable technology portfolio, including biomarker arrays, molecular diagnostic tests, bioinformatic tools for 3D genomics and an expertly curated 3D genome knowledgebase comprising hundreds of millions of data points from over 10,000 samples in more than 30 human diseases.

OBD is headquartered in Oxford, UK and is listed on AIM of the London Stock Exchange. It also has a commercial team in the US and a reference laboratory in Penang, Malaysia.

For more information, please visit the Company’s website, www.oxfordbiodynamics.com, or follow on Twitter or LinkedIn.

About EpiSwitch®
The 3D configuration of the genome plays a crucial role in gene regulation. By mapping this architecture and identifying abnormal configurations, EpiSwitch® can be used to diagnose patients or determine how individuals might respond to a disease or treatment.

Built on over 10 years of research, EpiSwitch® is Oxford Biodynamics’ award-winning, proprietary platform that enables screening, evaluation, validation and monitoring of 3D genomic biomarkers. The technology is fully developed, based on testing of over 10,000 samples in 30 disease areas, and reduced to practice.

In addition to stratifying patients with respect to anticipated clinical outcome, EpiSwitch® data offer insights into systems biology and the physiological manifestation of disease that are beyond the scope of other molecular modalities. The technology has performed well in academic medical research settings and has been validated through its integration in biomarker discovery and clinical development with big pharma.

Oxford BioDynamics is leveraging its leading technology to develop a pipeline of tests in a wide range of indications, such as immuno-oncology, oncology, and veterinary medicine, to follow the release of its EpiSwitch® CST (Covid Severity Test).

A copy of this announcement is available on the Company’s website at www.oxfordbiodynamics.com.

About PACT
The Partnership for Accelerating Cancer Therapies, or PACT, is a five-year project meant to support research that seeks to identify, develop and validate robust biomarkers — standardized biological markers of disease and treatment response — to advance new immunotherapy treatments that harness the immune system to attack cancer, it is overseen by the Foundation for the National Institutes of Health. The pharma companies participating that have made this grant award possible are: AbbVie, Amgen, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene Corporation, Genentech, Gilead, GlaxoSmithKline, Janssen/Johnson & Johnson, Novartis, and Pfizer.

About the Foundation for the National Institutes of Health
The Foundation for the National Institutes of Health creates and manages alliances with public and private institutions in support of the mission of the NIH, the world’s premier medical research agency. The Foundation, also known as the FNIH, works with its partners to accelerate biomedical research and strategies against diseases and health concerns in the United States and across the globe. The FNIH organizes and administers research projects; supports education and training of new researchers; organizes educational events and symposia; and administers a series of funds supporting a wide range of health issues. Established by Congress, the FNIH is a not-for-profit 501(c)(3) charitable organization. For additional information about the FNIH, please visit fnih.org.

References
1. Johns Hopkins, Immunotherapy: Precision Medicine in Action, accessed Jun 2021. https://www.hopkinsmedicine.org/inhealth/about-us/immunotherapy-precision-medicine-action-policy-brief.html
2. Martins F, Sofiya L, Sykiotis G P, et al. (2019). Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16, 563-580. https://doi.org/10.1038/s41571-019-0218-0
3. Carini C, Hunter E, et al. Chromosome conformation signatures define predictive markers of inadequate response to methotrexate in early rheumatoid arthritis. J Transl Med. 2018.
4. Hunter E, McCord R, et al. Comparative molecular cell-of-origin classification of diffuse large B-cell lymphoma based on liquid and tissue biopsies. Transl Med Commun. 2020;5.
5. Shah P, Hunter E, et al. Development and validation of baseline predictive biomarkers for response to immuno-checkpoint treatments in the context of multi-line and multi-therapy cohorts using EpiSwitch epigenetic profiling. J Immunother Cancer. 2019;7.
6. Hunter E, Koutsothanasi C, et al. (2021). 3D genomic capture of regulatory immuno-genetic profiles in COVID-19 patients for prognosis of severe COVID disease outcome. BioRxiv, 2021.03.14.435295. https://doi.org/10.1101/2021.03.14.435295

For more information please contact: OxfordBioDynamics@instinctif.com

back to news

People

Melanie Toyne-SewellManaging Partner